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Abstract
Nematic liquid crystals in a polyhedral domain, a prototype for bistable
displays, may be described by a unit-vector field subject to tangent boundary
conditions. Here we consider the case of a rectangular prism. For
configurations with reflection-symmetric topologies, we derive a new lower
bound for the one-constant elastic energy. For certain topologies, called
conformal and anticonformal, the lower bound agrees with a previous result.
For the remaining topologies, called nonconformal, the new bound is an
improvement. For nonconformal topologies we derive an upper bound, which
differs from the lower bound by a factor depending only on the aspect ratios of
the prism.

PACS number: 02.40.Pc

1. Introduction

Present-day liquid crystal displays (e.g. twisted nematic) are based on monostable cells,
wherein, in the absence of external fields, the orientations of the liquid crystal molecules
assume a single (spatially varying) mean configuration which is effectively transparent
to incident polarized light. To produce and maintain optical contrast, voltage pulses,
which reorient the molecules, must be continually applied. There is considerable interest
in developing bistable cells, which support two (and possibly more) stable liquid crystal
configurations with contrasting optical properties. In bistable cells, power is needed only to
switch between the two states. One mechanism for engendering bistability is the cell geometry
[1–3]; nematic liquid crystals in prototype cells with polyhedral geometrical features (e.g.,
ridges, or posts) are found to support multiple configurations.

As a simple model for such systems, we consider the mean local orientation of a nematic
liquid crystal in a polyhedral domain as described by a director field n subject to suitable
boundary conditions. The situation we consider, strong azimuthal anchoring, is described
by tangent boundary conditions. Tangent boundary conditions require that, on a face of the
domain, n lies tangent to the face, but is otherwise unconstrained. This implies that on the
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edges of the polyhedron, n is parallel to the edges, and therefore is necessarily discontinuous
at the vertices. We restrict our attention to director fields which are continuous away from
the vertices (i.e., as continuous as possible). In this case, we can unambiguously assign an
orientation to the director (as the domain is simply connected), and regard n as a unit-vector
field.

In [4], we give a complete topological classification of continuous tangent unit-vector
fields in a convex polyhedron. An extension to the nonconvex and periodic cases, along with
a general procedure for analysing a large class of such classification problems, is given in [5].
In [6] we obtain a lower bound for the one-constant energy in terms of certain topological
invariants, the trapped areas. The case of a rectangular prism is considered in [7], where
we also derive an upper bound for the equilibrium (infimum) energy for a large family of
topologies called reflection-symmetric conformal and anticonformal. For these topologies,
the ratio of the upper and lower bounds depends only on the aspect ratios of the prism. We
also show that topologically nontrivial behaviour of configurations close to equilibrium may
concentrate near the edges, or may be smoothly distributed, depending on the aspect ratios.

In this paper, we consider again the case of a rectangular prism, and improve and extend
the previous results of [7]. Specifically, we derive a new lower bound for the energy
of reflection-symmetric topologies, expressed in terms of different invariants, namely the
wrapping numbers. In general, the new lower bound is an improvement on the previous one.
We also extend the analysis to all reflection-symmetric topologies, not just conformal and
anticonformal ones.

While liquid crystal applications are a principal motivation for this work, the problems
are also of intrinsic mathematical interest. Minimizers of the one-constant energy may be
regarded as harmonic maps from a Euclidean polyhedron to the two-sphere S2. The study
of harmonic maps between Riemannian manifolds is an extensive field, and connections to
problems in liquid crystals are well known [8]. For manifolds with boundary, the regularity
of minimizers for the Dirichlet problem for harmonic maps with sufficiently smooth (C2)

boundary and Dirichlet data are investigated in [9]. However, less appears to be known about
the case of manifolds with Lipschitz boundary, e.g. domains with corners, and for natural,
e.g. tangent boundary conditions. There are recent strong results on the existence, uniqueness
and regularity of minimizers for the Dirichlet problem for harmonic maps of fixed homotopy
type between Riemannian polyhedra for target spaces of negative curvature [10]. However, it
appears to be much more difficult to obtain corresponding results for target spaces of positive
curvature, e.g. S2, which we encounter in liquid crystals problems.

The paper is organized as follows. The topological classification of tangent unit-vector
fields in a rectangular prism is reviewed in section 2. We introduce the reflection-symmetric
topologies, which are characterized by certain invariants—the edge signs e, kink numbers k
and trapped area �—associated with one of the prism vertices. In section 3, we derive a
lower bound for the one-constant elastic energy. This turns out to depend on the absolute
values of the wrapping numbers (which may be expressed in terms of e, k and �). For certain
topologies, called conformal and anticonformal, for which the wrapping numbers all have the
same sign, the lower bound can be expressed in terms of the trapped area alone, and coincides
with the result previously derived in [6, 7]. Conformal and anticonformal topologies are
characterized in section 4, where it is shown that these are precisely the topologies which have
conformal and anticonformal representatives of the type considered in [7]. In section 5, we
introduce representative configurations for nonconformal topologies, and derive from them an
upper bound for the elastic energy. This differs from the lower bound of section 2 by a factor
depending only on the aspect ratios. The appendix contains a derivation of a formula for the
kink numbers of conformal and anticonformal configurations.
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Figure 1. The kink number kv
y is equal to −1. The curve about v on the face of P normal to ŷ

is positively oriented with respect to −ŷ (the outward normal). Along this curve, n describes a
three-quarter turn from −ẑ to x̂ (so that ev

z = −1, ev
x = 1), negatively oriented with respect to −ŷ.

Relative to the quarter-turn geodesic from −ẑ to x̂, its winding number is −1.

2. Reflection-symmetric topologies

Let us briefly recall the results concerning the classification of continuous tangent unit-vector
fields n on a rectangular prism P. For convenience, we let P denote the prism without its
vertices, so that n is continuous on P. For definiteness, we take the prism to be given by
0 � rj � Lj , with edge lengths Lj ordered so that Lx � Ly � Lz. At each vertex of P,
denoted v = (vx, vy, vz), we associate with n a set of topological invariants, namely the edge
signs, kink numbers and trapped area. The edge signs, denoted ev

j , determine the signs of n
on the edges at v relative to the coordinate unit vectors, i.e.,

n(x, vy, vz) = ev
x x̂, 0 < x < Lx, (1)

and similarly for ev
y and ev

z . (Of course, this designation is redundant; the edge signs ev
j and

ew
j at vertices v and w joined by an edge parallel to the j -axis are necessarily the same.)

The integer-valued kink numbers, denoted kv
j , count the windings of n along a path about

v on the face normal to ̂ (here, as above, j = x, y or z). By convention, the paths are
taken to be positively oriented with respect to the outward normal through the centre of the
face. The minimum possible winding (a net rotation of ±π/2) is assigned a kink number of
zero. Nonzero windings are designated positive or negative according to their orientation with
respect to the outward normal (either ̂ or −̂). See figure 1.

The continuity of n (in particular, the absence of singularities on the surface of P) implies
that the kink numbers on each face satisfy a sum rule [4]; for example, on one of the faces F
normal to ẑ, it turns out that∑

v∈F

(
kv
z − 1

4 (−1)vx/Lx (−1)vy/Ly ev
xe

v
y

) = 0. (2)

Analogous rules hold for the other faces.
The last invariant, the trapped area, denoted by �v, is the oriented area on the unit two-

sphere S2 of the image, n(Cv), of a surface, Cv, which separates v from the other vertices.
That is, letting (θ, φ) denote polar coordinates on S2,

�v =
∫

n(Cv)

sin θ dθ ∧ dφ. (3)

Expressed as an integral over Cv itself, �v is given by

�v =
∫

Cv
D · Ĉv dS. (4)
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Here Ĉv is the outward-oriented unit normal on Cv (Ĉv points towards v) and dS is the area
element, while the vector field D(r) is given by

Dj = 1
2εjkl(∂kn × ∂ln) · n. (5)

That (3) and (5) are equivalent follows from the fact that

D · Ĉv = det dnCv , (6)

where dnCv denotes the Jacobian of the restricted map nCv : Cv → S2 (and, as above, Cv is
oriented with respect to the outward normal).

For a rectangular prism, the trapped areas are necessarily odd multiples of π/2 (the area of
a right spherical triangle), and for given values of the edge signs and kink numbers, the allowed
values of the trapped areas differ by multiples of 4π (whole coverings of the sphere)—see
(13). The continuity of n (the absence of singularities inside P) implies the sum rule∑

v

�v = 0. (7)

One can show ([4]) that the edge signs, kink numbers and trapped areas are indeed
topological invariants (i.e., they are invariant under continuous deformations of n that preserve
the tangent boundary conditions) and that two tangent unit-vector fields on P are homotopic
if and only if their invariants are the same. For convenience, we have slightly adapted the
notation of [4] to suit the case of prisms (the conventions, however, are the same).

In what follows, we restrict our attention to a subset of the allowed prism topologies which
we call reflection symmetric. Let v and w denote a pair of vertices related by a reflection though
a midplane of the prism (and therefore joined by an edge). For reflection-symmetric topologies,
the edge signs at v and w are the same while the kink numbers and trapped areas differ by a
sign. That is,

ev
j = ew

j , kv
j = −kw

j , �v = −�w. (8)

It follows that at vertices related by two reflections (i.e., at diagonally opposite corners of a
face), the invariants are the same, while the invariants of vertices related by three reflections
(at diagonally opposite corners of the prism) are related as in (8).

For reflection-symmetric topologies the invariants are determined by their values at a
single vertex. For definiteness we take this vertex to be the origin, and henceforth denote the
invariants simply as (e, k,�). The surface separating the origin from the other vertices will
be denoted by C. It is straightforward to check that (8) implies that the sum rules (2) and (7)
are automatically satisfied.

The terminology stems from the fact that every reflection-symmetric topology has a
reflection-symmetric representative, i.e. a configuration n which is symmetric under reflections
through the midplanes,

n(x, y, z) = n(Lx − x, y, z) = n(x, Ly − y, z) = n(x, y, Lz − z). (9)

Let

R = {
r | 0 � rj � 1

2Lj

}
(10)

denote the octant of the prism with the origin as vertex. Then a reflection-symmetric
configuration is determined by its values in R. It is straightforward to verify that (9) implies
the relations (8). Conversely, given a configuration n′ with reflection-symmetric topology
(e, k,�) but which is not itself reflection symmetric, we can construct a reflection-symmetric
configuration n satisfying (9) with invariants (e, k,�) ( just take n = n′ in the prism octant R
and define n elsewhere via (9)).
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In [4] we introduced certain additional integer-valued topological invariants, called
wrapping numbers. As the preceding discussion implies, the wrapping numbers are not
independent of the edge signs, kink numbers and trapped areas, but rather can be expressed
in terms of them. We briefly recall the definition and properties of the wrapping numbers, as
they are central to the discussion to follow.

Let s denote a regular value of n restricted to C. That is, on C, there is a finite number of
points where n takes the value s, and, at any such point, the Jacobian of the map nC : C → S2

is nonsingular, so that, from (6), (D · Ĉ)(s) �= 0. The wrapping number at s, denoted by w(s),
is a signed count of the preimages of s on C, denoted by rp, the sign determined by whether
nC is orientation-preserving (+) or reversing (−) at rp. Thus,

w(s) =
∑

p

sgn[(D · Ĉ)(rp)]. (11)

To express the wrapping number in terms of the other invariants [4, 11, 12], let Upε denote the
disc of radius ε about rp on C, and let C − ∑

p Upε denote C with these discs excised. Let
∂C denote the boundary of C and ∂Upε the boundary of Upε . Choosing s as the south pole of
the polar angles (θ, φ) in (3) and using Stokes’ theorem, we get that

� = lim
ε→0

∫
n(C−∑

p Upε)

sin θ dθ ∧ dφ =
(∫

n(∂C)

− lim
ε→0

∫
n(

∑
p ∂Upε)

)
(1 − cos θ) dφ. (12)

n
(∑

p ∂Upε

)
consists of p small circuits about s, and the integral over these circuits in (12)

gives, in the limit ε → 0, 4π times w(s). n(∂C) consists of the spherical right triangle with
vertices ej ̂, j = x, y, z, along with kj circuits of the great circle normal to ̂. Each great
circle contributes ±2π to the integral in (12) according to its orientation with respect to the
polar axis through s, while the spherical triangle contributes ±π/2 (its signed area) or ±7π/2
according to whether or not it encloses s. Keeping track of signs one gets

w(s) = 1

4π
� +

1

2

∑
j

σj kj + exeyez ×
{

− 7
8 , if σj = sgn ej for all j,

+ 1
8 , otherwise,

(13)

where σj = sgn sj . From (13) it is clear that w(s) is a topological invariant. In fact, w(s) can
be defined so long as s does not lie in a coordinate plane (i.e., even if s is not a regular value
of n) as the degree of a certain continuous S2 → S2 map constructed by gluing n : C → S2

to a reference map which coincides with n on the boundary ∂C [4].
Equation (13) also implies that w(s) depends only on the signs of the components of s,

i.e. on the octant of S2 to which s belongs. In what follows, we label octants by a triple of
signs σ = (σx, σy, σz), so that Oσ denotes the octant {s | sgn sj = σj }. For convenience, we
let wσ denote the value of w(s) for s ∈ Oσ . Summing over octants in (13), we get that

� = 1

2
π

∑
σ

wσ (14)

(the terms in (13) involving ej and kj cancel in the sum).

3. Lower bound for the elastic energy

In the continuum theory of nematic liquid crystals [13], the elastic, or Frank–Oseen, energy
of a configuration n is given by

E(n) =
∫

P

[K1(div n)2 + K2(n · curl n)2 + K3(n × curl n)2

+ K4div((n · ∇)n − (div n)n)] dV. (15)
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Tangent boundary conditions imply that the contribution from the K4-term, which is a pure
divergence, vanishes. In the so-called one-constant approximation, the remaining elastic
constants K1,K2 and K3 are taken to be the same, equal to K, say. In this case, (15) simplifies
to

E(n) = K

∫
P

(∇n)2 dV = K

∫
P

3∑
j=1

(∂j n)2 dV. (16)

We shall use the one-constant approximation in what follows, and set K = 1.
Let Einf(e, k,�) denote the infimum energy for configurations with reflection-symmetric

topology (e, k,�). In [7] we obtained the lower bound

Einf(e, k,�) � 8Lz|�|. (17)

In view of (14), this may be written as

Einf(e, k,�) � 4πLz

∣∣∣∣∣
∑

σ

wσ

∣∣∣∣∣ . (18)

Here we derive a new lower bound which, in general, is an improvement on (17).

Theorem 3.1.

Einf(e, k,�) � 4πLz

∑
σ

|wσ |. (19)

Proof. Let n be a configuration with reflection-symmetric topology (e, k,�) for which the
energy (16) is finite. As shown in [6], we can, without loss of generality, take n to be smooth
(smooth configurations are dense in the space of finite-energy configurations with respect to
the energy norm).

We can assume that the energy of n in R is not more than its energy in any other octant of
the prism (we can replace n(r) by n(R · r) for a product R of reflections through midplanes;
the reflected configurations have the same topology and energy as n). Then

E(n) � 8
∫

R

|∇n|2 dV � 8
∫

r�Lz/2
|∇n|2 dV, (20)

where the last integral is taken over the positive octant of the ball of radius Lz/2 about the
origin. Using the local inequality for the energy density [6–8],

(∇n)2 � 2|D| � 2|D · r̂|, (21)

we get that

E(n) � 16
∫

r�Lz/2
|D(r) · r̂| dV = 16

∫ Lz/2

0
dr

∫
r∈Cr

|D(r) · r̂| dSr . (22)

Here, Cr is the positive octant of the sphere of radius r about the origin, with area element dSr .
We partition Cr into preimages of the octants Oσ of S2, writing

E(n) � 16
∫ Lz/2

0
dr

∫
r∈Cr

(∑
σ

∫
Oσ

ds δS2(n(r), s)

)
|D(r) · r̂| dSr . (23)

Here δS2 is the normalized Dirac delta-function on S2, so that
∫
Oσ

ds δS2(n(r), s) equals 1 if
n(r) ∈ Oσ and is zero otherwise. We interchange the integrals over r ∈ Cr and s and take the
absolute value outside these integrals to obtain

E(n) � 16
∫ Lz/2

0
dr

∑
σ

∣∣∣∣
∫

Oσ

ds
∫

r∈Cr

δS2(n(r), s)D(r) · r̂ dSr

∣∣∣∣ . (24)
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For s a regular value of n (by Sard’s theorem, regular values are of full measure), we get that∫
r∈Cr

δS2(n(r), s) dSr =
∑

p

∣∣det dnCr
(rp)

∣∣−1 =
∑

p

|D(rp) · r̂|−1, (25)

where the sum is taken over the preimages rp ∈ Cr of s, and we have used (6). Substituting
into (24), we get that

E(n) � 16
∫ Lz/2

0
dr

∑
σ

∣∣∣∣∣
∫

Oσ

ds
∑

p

sgn(D(rp) · r̂)

∣∣∣∣∣ . (26)

From (11), the sum over p is just the wrapping number w(s) = wσ , so that the integral over s
trivially gives a factor of π/2 (the area of Oσ ). Then the integral over r trivially gives a factor
of Lz/2. The required result (19) follows. �

4. Conformal and anticonformal topologies

The new bound (19) agrees with the previous bound (18) for topologies where
∑

σ |wσ | =∣∣∑
σ wσ

∣∣, i.e. where the nonzero wrapping numbers all have the same sign. We will say that a
reflection-symmetric topology is conformal if wσ � 0 for all σ , anticonformal if wσ � 0 for
all σ and nonconformal if neither of these conditions holds. Thus, the new bound constitutes
an improvement for nonconformal topologies.

It is useful to characterize the conformal and anticonformal topologies directly in terms
of the invariants (e, k,�).

Proposition 4.1. Define functions �χ(e, k), where χ = ±, as follows:
For χexeyez = 1,

�χ(e, k) = 2π
∑

j

|kj | + 2π

{
+ 7

4 , if χejkj � 0 for allj,

− 1
4 , otherwise.

(27)

For χexeyez = −1,

�χ(e, k) = 2π
∑

j

|kj | − 2π

{
+ 7

4 , if χejkj < 0 for allj,

− 1
4 , otherwise.

(28)

Then the reflection-symmetric topology (e, k,�) is conformal if and only if � � −�−(e, k)

and anticonformal if and only if � � �+(e, k). If equality obtains, i.e. � = −�−(e, k) or
� = �+(e, k), then at least one wrapping number must vanish.

Proof. The condition χwσ � 0 for all σ is equivalent to (e, k,�) being conformal (χ = −)

or anticonformal (χ = +). From (13), χwσ � 0 for all σ if and only if χ� � �χ(e, k), where

�χ(e, k) = 2π max
σ


−χ

∑
j

σj kj + χexeyez ×
{

+ 7
4 , if σj = ej for all j

− 1
4 , otherwise


 , (29)

with χ� = �χ(e, k) if and only if wσ = 0 for some σ . In (29), to realize the maximum we
may take, for all j such that kj �= 0, σj = −χsgn kj , and thereby replace −χσjkj by |kj | for
all j . Thus,

�χ(e, k) = 2π
∑

j

|kj | + max
σj |kj =0

χexeyez ×
{

+ 7
2π, if σj = ej for all j,

− 1
2π, otherwise.

(30)
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It remains to maximize the second term in (30) with respect to σj ’s for which kj = 0.
Suppose that χexeyez = 1. Then, provided σj = ej for all kj �= 0, i.e. provided −χsgn kj = ej

for all kj �= 0, the maximum value attained by the second term in (30) is 7π/2. Otherwise,
the maximum is −π/2. This is in accord with (27). Next, suppose that χexeyez = −1. The
maximum value attained by the second term in (30) is π/2 unless all kj are nonzero and
−χsgn kj = ej , in which case the maximum is −7π/2. This is in accord with (28). �

In [7] we introduced certain reflection-symmetric configurations in P which we called
conformal and anticonformal. We show next that the conformal and anticonformal topologies
are precisely those which have conformal and anticonformal representatives. To proceed, we
briefly recall the properties of conformal configurations ([6]) (as discussed below, the treatment
of anticonformal configurations is analogous). A reflection-symmetric configuration n is said
to be conformal if, in the prism octant R, (i) n is radially constant, i.e. n(λr) = n(r), and
(ii) n is conformal, i.e. the map t �→ ∇tn(r) from vectors t orthogonal to r̂ to vectors ∇tn(r)
orthogonal to n(r) preserves orientation, angles and ratios of lengths (or else vanishes).

Conformal configurations are conveniently represented via stereographic projection as
analytic functions f (w):(

nx + iny

1 + nz

)
(x, y, z) = f

(
x + iy

r + z

)
. (31)

The domain of f (w) is the quarter-unit-disc Q given by |w| � 1, 0 � Re w � 1 and
0 � Im w � 1. The boundary of Q consists of the real interval 0 � w � 1 (which corresponds
to the xz-face of R), the imaginary interval 0 � −iw � 1 (which corresponds to the yz-face)
and the circular arc |w| = 1, where 0 � arg w � π/2 (which corresponds to the xy-face).
Tangent boundary conditions imply that (i) f (w) is real for w real, (ii) f (w) is imaginary
for w imaginary and (iii) |f (w)| = 1 if |w| = 1. Assuming that f (w) has a meromorphic
extension to the extended complex plane, these conditions imply that if w∗ is a zero of f , then
−w∗ and w̄∗ are zeros, while 1/w̄∗ is a pole. The meromorphic functions which satisfy these
conditions are rational functions of the following form:

f (w) = εwn

a∏
j=1

(
w2 − r2

j

r2
j w2 − 1

)ρj b∏
k=1

(
w2 + s2

k

s2
kw

2 + 1

)σk c∏
l=1

( (
w2 − t2

l

)(
w2 − t̄2

l

)
(
t2
l w2 − 1

)(
t̄2
l w2 − 1

)
)τl

. (32)

Here, ε = ±1 and n, an odd integer, gives the order of the zero or pole of f at the origin. a is
the number of zeros of f (ρj = 1) and poles of f (ρj = −1) on the real interval (0, 1), with
positions rj ordered so that 0 < r1 � · · · � ra < 1. Similarly, b is the number of zeros of f

(σk = 1) and poles of f (σk = −1) on the imaginary interval (0, i), with positions isk ordered
so that 0 < s1 � · · · � sb < 1. Finally, c is the number of zeros of f (τl = 1) and poles of f

(τl = −1) in the interior of Q, with positions tl .
The edge signs, kink numbers and trapped area of conformal configurations are given by

ex = ε(−1)a, ey = ε(−1)b(−1)(n−1)/2, ez = sgn n, (33)

kx = −1

2
(−1)bey

(
b∑

k=1

(−1)kσk +
1

2
(1 − (−1)b)ez

)
,

ky = −1

2
(−1)aex


 a∑

j=1

(−1)jρj +
1

2
(1 − (−1)a)ez


 , (34)

kz = 1

4
(exey − n) − 1

2

a∑
j=1

ρj − 1

2

b∑
k=1

σk −
c∑

l=1

τl
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and

� = − 1
2 (|n| + 2(a + b) + 4c)π. (35)

As explained in [7], the expressions for the edge signs and the trapped area are easily derived
(in particular, (35) follows from consideration of the degree of f on the extended complex
plane). A derivation of the expression for the kink numbers, which was deferred in [7], is
given here in the appendix.

Clearly, a conformal configuration has a conformal topology; the orientation-reversing
property ensures that the wrapping numbers cannot be positive. Below we establish the
converse fact: every conformal topology (e, k,�) has a conformal representative. The
demonstration splits into four cases according to the sign of exeyez and of ej kj . In each case
we exhibit the parameter values, expressed in terms of e, k and �, for a particular conformal
configuration. It is then straightforward to verify—we omit the explicit demonstration—that
the specified parameters are admissible (i.e., that n is an odd integer; a, b, c are non-negative
integers; ε, ρj , σk, τl are signs), and that, with these parameters, the values of the invariants
given by (33)–(35) are just (e, k,�). Deriving the exhibited values involves a systematic
and slightly tedious investigation of (33)–(35). For the sake of brevity, these details are also
omitted.

Case 1(a). exeyez = 1 and ej kj > 0 for all j . Let

ε = −ex, n = ez,

a = 2|ky | − 1, ρj = (−1)j ez,

b = 2|kx | − 1, σk = (−1)kez,

c = − 1

2π
� − |kx | − |ky | +

3

4
, τl =

{
−ez, l < |kz|,
(−1)l, l � |kz|.

(36)

Note that (13) implies that c − (|kz| − 1) is non-negative and even. Here and in the cases to
follow, we do not specify the positions of the zeros and poles explicitly.

Case 1(b). exeyez = 1 and ej kj � 0 for some j . Without loss of generality, we may assume
that j = z. This follows from considering the fractional linear transformation:

r(w) = i − w

i + w
(37)

which maps Q onto itself while cyclically permuting its vertices (r corresponds to the 2π/3-
rotation on S2 about the axis (1,1,1)). Therefore, if f is a conformal configuration, so is f̃

given by

f̃ = r ◦ f ◦ r−1. (38)

It is easily verified that f̃ and f have the same trapped areas while their edge signs and kink
numbers are related by cyclic permutation:

ẽ = (ez, ex, ey), k̃ = (kz, kx, ky). (39)

Letting ezkz � 0, we take

ε = ex, n = (4|kz| + 1)ez,

a = 2|ky |, ρj = −(−1)j exsgn ky,

b = 2|kx |, σk = −(−1)keysgn kx,

c = − 1

2π
� − |kx | − |ky | − |kz| − 1

4
, τl = (−1)l .

(40)
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Note that (13) implies that c is non-negative and even.

Case 2(a). exeyez = −1 and ej kj < 0 for some j . As in case 1(b), without loss of generality,
we may take ezkz < 0. Let

ε = ex, n = −(4kz + ez),

a = 2|ky |, ρj = −(−1)j exsgn ky,

b = 2|kx |, σk = −(−1)keysgn kx,

c = − 1

2π
� − |kx | − |ky | − |kz| +

1

4
, τl = (−1)l .

(41)

Note that (13) implies that c is non-negative and even.

Case 2(b). exeyez = −1 and ej kj � 0 for all j . Let

ε = ex, n = 3ez,

a = 2|ky |, ρj = ez(−1)j ,

b = 2|kx |, σk = ez(−1)k,

c = − 1

2π
� − |kx | − |ky | − 3

4
, τl =

{
−ez, l � |kz| + 1,

(−1)l, l > |kz| + 1.

(42)

Note that (13) implies that c − (|kz| + 1) is non-negative and even.

Anticonformal configurations are given by antianalytic functions, in analogy with the
conformal case. Specifically, if f (w) is a conformal configuration, then f (w) is anticonformal
with invariants (ē, k̄, �̄) given by

ē = (ex,−ey, ez), k̄ = (−kx, ky,−kz), �̄ = −�. (43)

Thus, conformal and anticonformal configurations are in one-to-one correspondence. Also,
given any (e, k,�) and (ē, k̄, �̄) related as in (43), one can verify from (27) and (28)
that �+(ē, k̄) = �−(e, k), so that �̄ � �+(ē, k̄) if and only if � � −�−(e, k). Thus,
conformal and anticonformal topologies are in one-to-one correspondence, and representatives
of every anticonformal topology may be obtained from complex conjugation of the associated
conformal representative.

The preceding discussion may be summarized as follows:

Proposition 4.2. A reflection-symmetric topology is conformal if and only if it contains
a conformal configuration, and anticonformal if and only if it contains a anticonformal
configuration.

5. Upper bound for elastic energy

In [7] we showed that for a conformal or anticonformal topology (e, k,�):

Einf(e, k,�) � 8L|�|, (44)

where

L = (
L2

x + L2
y + L2

z

)1/2
. (45)

We note that the upper bound differs from the lower bound (17) by a factor, L/Lz, which
depends only on the aspect ratios of the prism, and not on (e, k,�).
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Here we derive an analogous upper bound for nonconformal topologies. To this end, we
construct representatives n. As in the conformal and anticonformal cases, we take these to be
reflection symmetric and radially constant in R. In R, n is taken to be of the form(

nx + iny

1 + nz

)
(r) = F(w, w̄), where w = x + iy

r + z
. (46)

We take F to be a juxtaposition of analytic and antianalytic domains (in which the local estimate
(21) for the energy density becomes an equality), separated by an interpolating domain of small
energy. For definiteness, we take � < 0 (the case � > 0 is treated analogously). Let f denote
the conformal configuration with topology (e, k,−�−(e, k)), so that f is the conformal
configuration with the largest trapped area compatible with e and k. Let w0 denote a point
in the interior of Q, and let Dε(w0) = {w||w − w0| < ε} denote the open ε-disc about w0.
Choose w0 and ε so that D2ε(w0) is contained in Q and contains no poles of f . Let

W = 1

4π
(� + �−(e, k)). (47)

Since (e, k,�) is nonconformal, W is a positive integer. We let

F(w, w̄) =




f (w), w ∈ Q − D2ε(w0),

sf (w) + (1 − s)(f (w0) + (w − w0)
W ), w ∈ D2ε(w0) − Dε(w0),

f (w0) + ε2W(w̄ − w̄0)
−W, w ∈ Dε(w0),

(48)

where

s(w, w̄) = |w − w0| − ε

ε
(49)

(so that s varies between 0 and 1 as |w−w0| varies between ε and 2ε). Thus, in Q−D2ε(w0), F

coincides with f and therefore is conformal, while in Dε(w0) it is anticonformal.
Let us verify that F has the required topology. Since it coincides with f on the boundary

of Q,F has the same edge signs and kink numbers as f , namely e and k. As for the trapped
area, from (4) and (46) it is straightforward to derive the general expression

�(F) =
∫

Q

4
|∂w̄F |2 − |∂wF |2

(1 + |F |2)2
d2w. (50)

Equation (50) can be evaluated by dividing the domain of integration as in (48). The
contribution from Q − D2ε(w0) is, to O(ε2), just the trapped area of f , namely −�−(e, k)

(substituting f for F in (50), the contribution from D2ε(w0) is O(ε2)). Consider next the
contribution from the disc Dε(w0). Here F = f (w0) + ε2W(w̄ − w̄0)

−W , so that F covers
the extended complex plane, apart from an εW -disc about f (w0),W times with positive
orientation. It follows that the contribution to (50) is, to within O(εW ) corrections, 4πW . The
remaining contribution, from the annulus D2ε(w0) − Dε(w0), is O(ε2). This is because the
area of the annulus is O(ε2), while the integrand in (50) may be bounded independently of ε

(by assumption, f has no poles in D2ε(w0)). Since the trapped area is an odd multiple of π/2,
it follows that, for small enough ε,

�(F) = −�−(e, k) + 4πW = �. (51)

By estimating the energy of the nonconformal representatives we can obtain the following
upper bound for Einf(e, k,�):

Theorem 5.1. Let (e, k,�) denote a nonconformal topology. Then

Einf(e, k,�) � 36πL
∑

σ

|wσ |. (52)
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Proof. From (16) and (46) one can derive the general expression for the energy:

E(F) = 16
∫

Q

4|r(w)| |∂w̄F |2 + |∂wF |2
(1 + |F |2)2

d2w, (53)

where r(w) is the point on the boundary of R which has w as its stereographic projection.
Since |r(w)| � L/2, it follows that

E(F) � 8LA(F ), (54)

where

A(F ) =
∫

Q

4
|∂w̄F |2 + |∂wF |2

(1 + |F |2)2
d2w. (55)

A(F ) represents the unoriented area of n(Cr). Expression (55) for A(F ) differs from
expression (50) for �(F) in the relative sign of the w- and w̄-derivative terms. (Thus,
for conformal and anticonformal configurations, one obtains the estimate (44).) Arguing as
for (51), we have that

A(F ) � |�−(e, k)| + 4πW. (56)

From (14), this may be written as

A(F ) � 4πW − 1

2
π

∑
σ

wσ−, (57)

where wσ− are the (nonpositive) wrapping numbers of f . From (13) and (47), wσ− are related
to the wrapping numbers of F, denoted by wσ , according to

wσ− = wσ − W. (58)

Substituting into (57), we get that

A(F ) � 4πW +
1

2
π

∑
σ

(W − wσ ) � 8πW +
1

2
π

∑
σ

|wσ |. (59)

One easily establishes the estimate

2W �
∑

σ

|wσ |. (60)

Indeed, since � < 0 by assumption, it follows from (14) that∑
σ

wσ < 0. (61)

Since f has trapped area −�−(e, k), it follows from proposition 4.1 that there is at least one
octant, say σ0, in which f has zero wrapping number. From (58), wσ0 = W . Let

∑′
σ denote

the sum over octants with σ0 omitted. Then∑
σ

′
wσ < −W. (62)

It follows that ∑
σ

|wσ | =
∑

σ

′|wσ | + W �
∣∣∣∣∣
∑

σ

′
wσ

∣∣∣∣∣ + W � 2W. (63)

Substituting (63) into (57), we get that

A(F ) � 9 × 1

2
π

∑
σ

|wσ |. (64)

The required result, (52), follows from substitution into (54). �
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6. Discussion

For nonconformal topologies, the ratio of the upper and lower bounds for Einf , as given by (52)
and (19), is 9L/Lz. By finding representatives of lower energy, it might be possible to obtain
a ratio closer to the conformal/anticonformal result, L/Lz (which can be further improved by
more accurate estimates of the energy of the representatives [7]).

In [6], we described, for conformal and anticonformal topologies, a transition in
topologically nontrivial equilibrium (infimum-energy) configurations, from singular, in the
case of a cubic domain, to smooth, as the prism aspect ratios are varied. Singular
configurations, when they appear, are limits of configurations which differ from the
topologically simplest ‘unwrapped’ configurations in thin tubes along the prism edges.
It would be interesting to investigate whether similar transitions occur for nonconformal
topologies. The nonconformal representatives differ from conformal/anticonformal
configurations only in a tube (a disc in the two-dimensional stereographic description (48)),
and depending on the aspect ratios, it may be energetically advantageous for these tubes to
collapse to edge singularities, or not.
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Appendix. Kink numbers of conformal configurations

Taking n to be a conformal configuration with stereographic projection f given by (32), we
derive formulae for the kink numbers k = (kx, ky, kz) in terms of the parameters of f .

Formulae for kx and ky . For definiteness, consider the calculation of ky . Let r(τ ), 0 � τ � 1,
denote a small quarter-circular arc on the xz-face of R starting on the z-axis and ending on the
x-axis (so that r(τ ) is positively oriented with respect to the outward normal −ŷ through the
centre of the face). Let ν(τ ) = n(r(τ )). Then ν(τ ) describes a curve on S2 along the great
circle in the xz-plane, starting from ezẑ and ending at ex x̂. ky is the winding number of ν(τ )

relative to the shortest arc joining ezẑ to ex x̂, with anticlockwise windings about −ŷ taken
as positive. ky is given by the number of times ν(τ ) crosses a given point, say ẑ, counted
with a sign according to orientation. Let τp denote the parameter values at these crossings.
Assuming that ν ′(τp) �= 0, we get that

ky = −
∑
τp>0

sgn(ν ′(τp) · x̂) +
1

2
(1 + ez) · 1

2
(ex − sgn(ν ′(0) · x̂)). (A.1)

If ez = 1 then ν(0) = ẑ; the last term in (A.1) accounts for a possible contribution in this
case. There is no contribution if sgn(ν ′(0) · x̂) = ex , as for the shortest arc joining ẑ to ex x̂
(for which ky = 0). Otherwise, the initial point constitutes a crossing with sign ex .

Under stereographic projection, r(τ ) corresponds to w(τ) = τ , the crossing ν(τp) = ẑ
corresponds to f (τp) = 0 and sgn(ν ′(τp) · x̂) corresponds to sgn f ′(τp). The zeros of f on
the real interval (0, 1) are given by rj ’s with ρj = 1. Thus, (A.1) becomes

ky = −
∑

j |ρj =1

sgn f ′(rj ) +
1

2
(1 + ez) · 1

2
(ex − sgn f ′(0)). (A.2)



2686 A Majumdar et al

For simplicity, let us assume that rj ’s are all distinct and ordered so that 0 < r1 < · · · < ra < 1.
In this case, for ρj = 1, f ′(rj ) �= 0, and from (32), we have that

sgn f ′(rj ) = sgn


ε

2rj

r4
j − 1

a∏
m=1
m�=j

(
r2
j − r2

m

r2
mr2

j − 1

)ρm


 = ε(−1)j . (A.3)

If ez = 1, n is positive and w = 0 is also a zero of f . As f ′(0) vanishes if n > 1, we replace
sgn f ′(0) by limw→0 sgn f (w) = ε. Equation (A.2) becomes

ky = −ε

a∑
j=1

(−1)j · 1

2
(1 + ρj ) +

1

2
(1 + ez) · 1

2
(ex − ε). (A.4)

Recalling that ex = ε(−1)a , with some further straightforward manipulation we obtain

ky = −1

2
(−1)aex


 a∑

j=1

(−1)jρj +
1

2
ez(1 − (−1)a)


 , (A.5)

which is just the expression given in (34). In fact, (A.5) holds even if some of rj ’s coincide.
The expression for kx is similarly derived, with r(τ ) taken to be a quarter-circular arc on

the zy-face of R with projection w = i(1 − τ). Details are omitted.

Formula for kz. Let r(τ ), 0 � τ � 1, denote a small quarter-circular arc on the xy-face of R
starting on the x-axis and ending on the y-axis (so that r(τ ) is positively oriented with respect
to the outward normal −ẑ through the centre of the face). Under stereographic projection,
r(τ ) corresponds to w(τ) = exp(iπτ/2), and n(r(τ )) to f (exp(iπτ/2)). kz is the winding
number of f (exp(iπτ/2)) on the unit circle in the complex plane relative to the shortest arc
joining ex x̂ to ey ŷ. Anticlockwise windings about −ẑ are taken as positive. It follows that

kz = − 1

2π
(arg f (exp(iπ/2)) − arg f (0)) +

1

4
sgn(exey), (A.6)

where arg f (exp(iπτ/2)) is taken to be continuous in τ and the last term ensures that the
winding number is zero for the shortest arc joining ex x̂ to ey ŷ. Referring to (32), each factor
of the form [(w2 ± p2)/(p2w2 ± 1)]ξ contributes ξπ to the change in arg f in (A.6), while zn

contributes nπ/2. Thus we get

kz = −1

2

a∑
j=1

ρj − 1

2

b∑
k=1

σk −
c∑

l=1

τl − 1

4
(n − exey), (A.7)

as in (34).
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